

Longridge High School

Curriculum Intent Computer Science

1. Vision & Purpose

- The intent is to ensure every pupil develops strong logical thinking, problem-solving and computational skills, regardless of their prior experience.
- The Computer Science curriculum aims to not only teach technical skills but also to build resilience, creativity, and independent thought so that pupils can thrive in a digital world.

2. Ambition for All Learners

- Ensure that all pupils, including those who may not see themselves as "tech-savvy," are supported to complete and achieve competence in computer science.
- Provide differentiated challenge so that pupils who excel can explore deeper theoretical and practical aspects (e.g. advanced programming, algorithm complexity).
- Ensure inclusion for pupils with SEND/EAL and provide appropriate scaffolding (tools, support) to allow full participation.

3. Knowledge & Skills Development

- Pupils will learn core computational thinking: algorithms, logical reasoning, and above all keeping safe online.
- Progress through learning specific programming language Python and understand hardware/software fundamentals.
- Explore data representation, networks, cybersecurity, ethical use of technology (digital citizenship).
- Build skills in computational thinking, debugging, testing, and evaluation of software/hardware solutions.

4. Sequencing & Progression

- From Year 7: foundational knowledge (basic programming, logic, simple algorithms, understanding digital systems).
- Through KS3: progressively more complex programming tasks building on previous lessons knowledge and progression, introducing data, control structures, simple modelling, and user interface design.
- Into KS4: alignment with GCSE computer science requirements (theory, problem solving, programming project) ensuring pupils are ready for the final examinations.
- Frequent revisiting of key concepts (e.g. algorithms, data) to ensure retention and to build fluency over time.

5. Literacy, Oracy & Vocabulary

- Emphasis on precise terminology (e.g., "algorithm", "iteration", "variable", "syntax", "binary") so pupils develop a strong academic vocabulary.
- Use of class discussions / peer talk and learning definitions, to strengthen oracy.

Our Vision

We aim for all of our pupils to live life in all its fullness so they can flourish spiritually, academically and personally.

6. Enrichment & Cultural Capital

- Opportunities for extra-curricular computing clubs, coding competitions.
- Integration of real-world applications: show how computer science underpins modern society (security, AI, data, app development).

7. Cross-Curricular Links & Real-World Relevance

- Links with mathematics (logic, algebra), science (computing hardware, electronics), design and technology (software/hardware design).
- Awareness of current tech in society: cybersecurity, media, digital safety, AI ethics.
- Careers education: highlight professions in software engineering, data, cybersecurity, digital services.

8. Safeguarding & Online Safety

- The curriculum includes digital safety, privacy, understanding ethical issues in computing.
- Address risks like online harassment, misinformation, safe use of digital platforms.

9. Assessment & Impact

- Use frequent formative assessments (quizzes, peer review, coding tasks) to identify misconceptions early. KS3 have regular Microsoft form quizzes to check understanding every 6 weeks. KS4 have similar checks.
- Summative unit assessment aligned with GCSE standards (for pupils at that level).

Our Vision

We aim for all of our pupils to live life in all its fullness so they can flourish spiritually, academically and personally.